Exercices Produit Scalaire 1S Un

Quelle Chaussure Homme Pour L Hiver

Descartes et les Mathématiques Des exemples d'exercices pour l'articulation « première terminale » en série S. Sommaire 1. Droites perpendiculaires dans un triangle rectangle 2. Angles et aire d'un triangle 3. Contruire un triangle connaissant un côté et deux angles 4. Contruire un triangle connaissant deux côtés et un angle ABC est un triangle rectangle en A. On désigne par A' le milieu de [BC], par H le pied de la hauteur, issue de A, et par I et J les projetés orthogonaux de H respectivement sur (AB) et (AC). 1. a. Démontrer que. = −.. 1. b. Démontrer que les droites (AA') et (IJ) sont perpendiculaires. Solution 1. La projection de sur (AB) est, donc. =. = -.. La projection de sur (AB) est, donc. =.. On a bien. = −. On montre, de même, que. = −.. La forme vectorielle du théorème de la médiane, dans le triangle ABC, permet d'écrire: 2 = +. Calculons le produit scalaire: 2. = ( +). Exercices produit scalaire 1s et. = -. +. = (- +). = 0, car la hauteur (AH) est perpendiculaire à (BC). Le produit scalaire. est nul, les droites (AA') et (IJ) sont perpendiculaires.

Exercices Produit Scalaire 1S Et

Copyright 2007 - © Patrice Debart e visite des pages « première ». Page n o 104, réalisée le 17/3/2007

Donc nécessairement: ${AB}↖{→}. {AC}↖{→}=AH×AC$ Et on obtient donc: $7=AH×5$. Et par là: $AH={7}/{5}=1, 4$. D'après la relation de Chasles, on a: ${AB}↖{→}={AC}↖{→}+{CB}↖{→}$ On calcule alors: $c^2={∥}{AB}↖{→}{∥^2}={AB}↖{→}. {AB}↖{→}$ On obtient donc: $c^2=({AC}↖{→}+{CB}↖{→}). ({AC}↖{→}+{CB}↖{→})$ D'où: $c^2={AC}↖{→}. {AC}↖{→}+{AC}↖{→}. {CB}↖{→}+{CB}↖{→}. {AC}↖{→}+{CB}↖{→}. Devoirs 1S. {CB}↖{→}$ Donc: $c^2={∥}{AC}↖{→}{∥}^2+2×({AC}↖{→}. {CB}↖{→})+{∥}{CB}↖{→}{∥}^2$ Soit: $c^2=b^2-2×({CA}↖{→}. {CB}↖{→})+a^2$ Et finalement: $c^2=a^2+b^2-2ab\cos C↖{∧}$. On reconnait ici la " formule d'Al-Kashi ". On a: $c^2=a^2+b^2-2ab\cos C↖{∧}$. Soit: $c^2=2^2+3^2-2×2×3×\cos {π}/{3}$. Soit: $c^2=4+9-12×\0, 5=7$. Et par là, comme $c$ est positif, on a: $c=√7$ Soit: $4^2=2^2+3^2-2×2×3×\cos C↖{∧}$. Donc: $16-4-9=-12×\cos C↖{∧}$. Et par là: $\cos C↖{∧}={3}/{-12}=-0, 25$ A l'aide de la calculatrice, on obtient alors une mesure de $a$, et on trouve: $a≈104°$ (arrondie au degré) On obtient: ${AB}↖{→}(x_B-x_A;y_B-y_A)=(-3+1;1-2)=(-2;-1)$ De même, on obtient: ${AC}↖{→}(2;-5)$ Le repère étant orthonormé, on a: ${AB}↖{→}.