Exercice Suite Arithmétique Corrigé

20 Attaques Imposées

b) Compléter ce tableau. c) Le programme suivant traduit l'algorithme dans le tableau précédent Déterminer le nombre de passages dans la boucle while. Exercice d'arithmétique 2: Pour n=64 et p=27, à partir du programme dans la question précédente, compléter le tableau suivant: On peut rajouter autant de colonnes que nécessaires. 3. Exercice arithmétique: Modélisation Exercice arithmétique 1: L'algorithme de Kaprekar consiste à associer à tout nombre entier naturel le nombre généré de la façon suivante: On considère les chiffres de l'écriture décimal du nombre. On forme le nombre en rangeant ces chiffres dans l'ordre croissant et le nombre en les rangeant dans l'ordre décroissant. On pose. On itère ensuite le processus en repartant du nombre. Par exemple, si on choisit, on obtient: et d'où. En itérant le processus, on obtient successivement:. Ensuite, tous les résultats sont égaux à. 1. Exercice suite arithmetique corrigé. Montrer que l'algorithme appliqué au nombre 5 294 conduit aussi à un nombre entier tel que. Exercice arithmétique 2: On effectue à la calculatrice les calculs ci-dessous: 1.

  1. Suite arithmétique exercice corrigé
  2. Exercice suite arithmétique corrigé du bac
  3. Exercice suite arithmétique corrigés
  4. Exercice suite arithmetique corrigé
  5. Exercice suite arithmétique corrigé pdf

Suite Arithmétique Exercice Corrigé

Mécanique générale - Cours, tutoriaux et travaux pratiques corrigés et éléments de formation + Exercices complémentaires avec corrigés issus... Site:? rubrique122. THÈSE Hilaire Fernandes - Université de Lille 1. 10 EXERCICES. Calculer les réactions des systèmes représentés ci-après. Remarque: Dans les réponses données, une réaction positive. Arithmétique dans Z Exercice 1: Si a, b? Z vérifient a + b? nZ et ab? nZ, alors a2? nZ. Corrigé: Il suffit de relier a+b, ab et a2: a est racine du trinôme x2... Le second degré - MUIZON cours? p. 284. 8 exercices corrigés? p. 285. Rappels sur la fonction exp: tsm-lf-rap-fb tsm-lf-rap-sf. I. Fonction réciproque de la fonction exp. Exercices sur les intervalles de fluctuation Exercice 1 Un candidat... p. Exercices corrigés sur l'artithmétique en seconde. Dans un collège de 284 élèves, 81 ont mentionné « asthme » soit une fréquence de... CORRIGE des Exercices sur les Intervalles de fluctuation. bts économie sociale familiale conseil et expertise technologiques Le sujet comporte 17 pages, numérotées de 1/17 à 17/17.

Exercice Suite Arithmétique Corrigé Du Bac

Alors $$u_{k+1}\geq k\iff 3u_k-2k+3\geq k\iff 3u_k+3\geq 3k\iff u_k\geq k. $$ Bilan: $\mathcal P_0$ est vraie et, pour tout $k$, $\mathcal P_k\implies \mathcal P_{k+1}$. Donc $\mathcal P_n$ est vraie pour tout $n$. Élève 2: Initialisation: la propriété est vraie au rang 0. Hérédité: on suppose que $\mathcal P_n$, la propriété $u_n\geq n$ est vraie pour tout $n$. On étudie $\mathcal P_{n+1}$: $$u_{n+1}=3u_n-2n+3=3(u_n+1)-2n. $$ Or $u_n\geq n$ donc $u_{n}+1>n$ donc $3(u_n+1)>3n$ et $3(u_n+1)-2n>n\iff u_{n+1}>n. $ $u_{n+1}$ est strictement supérieur à $n$ donc $u_{n+1}\geq n+1$. La propriété est vraie au rang $n+1$. La propriété est donc héréditaire. Exercice suite arithmétique corrigé du bac. De plus, elle est initialisée au rang $0$ donc $\mathcal P_n$ est vraie pour tout $n$. Élève 3: Pour $n\in\mathbb N$, on note $\mathcal P(n)$ la propriété $\mathcal P(n)="\forall n\in\mathbb N, \ u_n\geq n"$. Montrons par récurrence que, pour tout $n\in\mathbb N$, $\mathcal P(n)$ est vraie. Initialisation: $u_0=0\geq 0$, donc la propriété est vraie au rang 0.

Exercice Suite Arithmétique Corrigés

On suppose qu'il existe un entier $n$ tel que $\mathcal P(n)$ est vraie. $$u_{n+1}=3u_n-2n+3\geq 3n-2n+1=n+1. $$ Donc $\mathcal P(n+1)$ est vraie. Par le principe de récurrence, la propriété est vraie pour tout entier $n\in\mathbb N$. Raisonnement par disjonction de cas Enoncé Démontrer que, pour tout $x\in\mathbb R$, $|x-1|\leq x^2-x+1$. Enoncé Résoudre l'inéquation $x-1\leq \sqrt{x+2}$. Enoncé Le but de l'exercice est de démontrer que le produit de deux nombres entiers qui ne sont pas divisibles par 3 n'est pas divisible par 3. Soit $n$ un entier. Quels sont les restes possibles dans la division euclidienne de $n$ par $3$? En déduire que si $n$ n'est pas divisible par 3, alors $n$ s'écrit $3k+1$ ou $3k+2$, avec $k$ un entier. La réciproque est-elle vraie? Soit $n$ un entier s'écrivant $3k+1$ et $m$ un entier s'écrivant $3l+1$. Vérifier que $$n\times m=3(3kl+k+l)+1. $$ En déduire que $n\times m$ n'est pas divisible par $3$. Démontrer la propriété annoncée par l'exercice. Exercice corrigé Exercices sur les suites arithmétiques Première Pro - LPO Raoul ... pdf. Enoncé Démontrer que si $n$ est la somme de deux carrés, alors le reste de la division euclidienne de $n$ par 4 est toujours différent de $3$.

Exercice Suite Arithmetique Corrigé

Par exemple, 957396 est divisible par 11 car est divisible par 11 alors que 19872 n'est pas divisible par 11 car n'est pas divisible par 11. Déterminer une écriture sous la forme avec et. Question 1: Question 2: Exercice d'arithmétique 2: Soit un entier naturel et avec la division euclidienne de par. Montrer que si n'est pas divisible par, alors n'est pas divisible par. Que peut-on dire de l'implication suivante: divisible par entraîne divisible par Question 3: Montrer que s'il existe deux entiers et premiers entre eux tels que alors est divisible par. Question 4: Démontrer que n'est pas rationnel. Exercice d'arithmétique 3: On admet que pour un nombre premier (positif), est irrationnel. Simplifier les nombres suivants puis donner le plus petit ensemble de nombres auquel il appartient. Exercices corrigés -Différents types de raisonnement : absurde, contraposée, récurrence, analyse-synthèse.... On demande de montrer les étapes de calculs 2. Exercice d'arithmétique en seconde: Aller plus loin Exercice d'arithmétique 1: Le tableau suivant donne une série de calculs à partir des deux nombres: et a) Ce tableau correspond à un algorithme vu en classe de troisième, lequel?

Exercice Suite Arithmétique Corrigé Pdf

Exprimer $\cos((n+1)°)$ en fonction de $\cos(n°)$, $\cos(1°)$ et $\cos\big((n-1)°\big)$. Démontrer que $\cos(1°)$ est irrationnel. Enoncé Démontrer que tout entier $n\geq 1$ peut s'écrire comme somme de puissances de 2 toutes distinctes. Enoncé Soit $A$ une partie de $\mathbb N^*$ possédant les trois propriétés suivantes: $1\in A$; $\forall n\in\mathbb N^*, \ n\in A\implies 2n\in A$; $\forall n\in\mathbb N^*, \ n+1\in A\implies n\in A$. Démontrer que $A=\mathbb N^*$. Enoncé Soit $(u_n)_{n\in\mathbb N}$ la suite définie par $u_0=0$ et, pour tout $n\in\mathbb N$, $u_{n+1}=3u_n-2n+3$. Exercice suite arithmétique corrigé mathématiques. On souhaite démontrer que, pour tout $n\in\mathbb N$, on a $u_n\geq n$. Voici les réponses de trois élèves à cette question. Analysez ces productions d'élèves, en mettant en évidence les compétences acquises et les difficultés restantes. Élève 1: Montrons par récurrence que, $\forall n\in\mathbb N, u_n\geq n$. Initialisation: $u_0\geq 0$ donc $\mathcal P_0$ est vraie. Hérédité: on suppose $\mathcal P_k$ vraie, c'est-à-dire $u_k\geq k$.

D'où: les sept nombres recherchés sont: 43, 45, 47, 49, 51, 53 et 55. exercice 5, u 3 = 2 + 3 × 5 = 17 On cherche donc n tel que:; soit encore: (n - 2)(5n + 19) = 12 912. Il faut donc trouver les racines du polynôme 5n² + 9n - 12950 = 0: qui n'est pas un entier! et exercice 6 Soit (u n) une telle suite de premier terme u 0 et de raison r. Il existe k tel que: et Or: et Or 4u k + 6r = 12 donc 2u k + 3r = 6 Ainsi: 6² + 5r² = 116 Soit: Puis 2u k + 3r = 6 donc u k = -3 ou u k = 9 Ainsi: -3, 1, 5, 9 conviennent ainsi que: 9, 5, 1, -3. Si (v n) est une suite géométrique de premier terme v 0 et de raison b, alors pour tout entier n: v n = v 0 b n. 1. Si (v n) est croissante et ses termes sont strictement négatifs alors, c'est-à-dire 0 < b < 1. 2. v 1 v 3 = v 1 2 b 2 et; 1 - b 3 = (1 - b)(1 + b + b²) On obtient donc le système: soit encore: Soit 6b² + 25b + 6 = 0 ou 6b² - 13b + 6 = 0 La première équation a deux solutions négatives (cf première questions) Donc. v 1 = -1; v 2 =; v 3 =. S = 2 + 6 + 18 +... + 118 098 S est la somme des premiers termes d'une suite géométrique de premier terme 2 et de raison 3. u 0 = 2; u 1 = 2 × 3; u 2 = 2 × 3²... 118 098 = 2 × 59 049 = 2 × 3 10.. S' est la somme des premiers termes d'une suite géométrique de premier terme 2 et de raison.