Discuter Selon Les Valeurs De M Le Nombre De Solutions – Fr.Asriportal.Com

Feuilleté Boudin Noir Oignons

Pour chaque intervalle I_i, on procède de la manière suivante: On justifie que f est continue. On justifie que f est strictement monotone. On donne les limites ou les valeurs aux bornes de I_i. Soit J_i l'intervalle image de I_i par f, on détermine si k \in J_i. On en conclut: Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i. On répète cette démarche pour chacun des intervalles I_i. On identifie trois intervalles sur lesquels la fonction f est strictement monotone: \left]- \infty; -1 \right], \left[ -1; \dfrac{1}{3}\right] et \left[ \dfrac{1}{3}; +\infty\right[. On applique donc le corollaire du théorème des valeurs intermédiaires trois fois. Sur \left]- \infty; -1 \right]: f est continue. f est strictement croissante. \lim\limits_{x \to -\infty} f\left(x\right)= - \infty et f\left(-1\right) = 2. Or 0 \in \left]-\infty; 2 \right].

Discuter Selon Les Valeurs De M Le Nombre De Solutions Video

Posté par alb12 re: Discuter suivant les valeurs de m 20-07-12 à 22:00 Je me permets de répondre à sa place, ce sera très court NB: ce n'est pas vraiment indispensable! Posté par mbciss re: Discuter suivant les valeurs de m 20-07-12 à 22:43 merci Posté par J-P re: Discuter suivant les valeurs de m 21-07-12 à 09:44 Tu peux calculer le "Delta réduit" ou le "Delta", les conclusions restent les mêmes. Le "Delta réduit" permet, lorsque le coefficient b de ax² + bx + c est pair, de ne pas trainer un facteur 4 inutile dans les calculs.

Discuter Selon Les Valeurs De M Le Nombre De Solutions 1

La 1ère équation avec les coefficients \((2;\, m-2)\) va s'écrire: \(X_1^2-2X_1+m-2=0\) et son discriminant: \(\Delta_1=4-4(m-2)=4(-m+3)\) est positif pour \(m\le3\) On en déduit que le couple de valeurs \((x, \, y)\) associé à cette équation existe ssi \(m\le3\). De même la 2ème équation avec les coefficients \((2;-(m+2))\) va s'écrire: \(X_2^2-2X_2-(m-2)=0\) et son discriminant: \(\Delta_2=4+4(m+2)=4(m+3)\) est positif pour \(m\ge-3\) On en déduit que le couple de valeurs \((x, \, y)\) associé à cette équation existe ssi \(m\ge-3\). En conclusion, le système initial possède deux solutions \((x, \, y)\) ssi \(m\in [-3;\, 3]\) CQFD? @+:-)

Inscription / Connexion Nouveau Sujet Bonjour à tous J'ai un exercice à faire pour mardi mais je ne comprends pas la dernière question:/ Voici l'énoncé: f est la fonction définie sur par f(x) = x 3 -3x²+2. C est la courbe représentant f dans un repère. a) Calculer f'(x) et étudier son signe b) Dresser le tableau de variation de f: On calcule f'(x) = 6x²-6x-12 = 324 supérieur à 0 donc il existe deux racines distinctes: x1 = -1 et x2 = 2 x! - -1 2 ----------------! ----------------------------------------------------------------- signes de f'(x)! +! -! + ----------------! ------------------------------------------------------------------- variations de f! 8! / \ /! / \ -19 / On obtiens un tableau de variation comme ça les / représentant les flèches c) Construisons dans un repère la courbe représentative de f: f(-3) = -44 f(-2. 5) = 19 f(-2) = -3 f(-1) = 8 f(0) = 1 f(1) -12 f(2) = -19 f(3) = -8 d) Graphiquement, discuter suivant les valeurs du réel m, le nombre de solutions de l'équation f(x) = m.