Fonction Nand Et Nor Exercices Corrigés

Elle Baise Dans Les Dunes

Tabled de vérité 3. Table de Karnaugh 3. Théorèmes logiques Un système logique est dit combinatoire si l'état de sa sortie ne dépend que de l'état de son entrée. Les fonctions logiques universelles NOR et NAND. Le système combinatoire ne doit donc pas présenter de réactions de la sortie sur l'entrée, de sorte à ce que l'état de la sortie ne dépende pas de l'histoire du système. A tout instant, on peut représenter logiquement un système combinatoire en faisant une liste des entrées et des sorties: la table de vérité. Par exemple, la table de vérité du décodage gray-binaire sur 3 bits est donnée par: |Code gray |Code binaire | |(entrée) |(sortie) | |000 |000 | |001 |001 | |011 |010 | |010 |011 | |110 |111 | |100 |101 | |101 |110 | |111 |100 | 3. Table de Karnaugh Cette forme de représentation est utilisée pour trouver une expression simplifiée d'une fonction logique. Dans le cas d'un système à quatre variables d'entrée, on crée un tableau à 2 x 4 entrées, puis on regroupe les termes adjacents. Par exemple, soit la table de vérité suivante: |ABCD |E| |0000 |1| |0001 |1| |0010 |0| |0011 |0| |0100 |0| |0101 |1| |0110 |0| |0111 |1| |1000 | | | |0| |1001 |0| |1010 |0| |1011 |1| |1100 |0| |1101 |1| |1110 |0| |1111 |1| La résolution par Karnaugh donne: Notez que les lignes 2, 3 et les colonnes 2, 3 présentent une variable.

Fonction Nand Et Nor Exercices Corrigés Pour

Cette loi est aussi notée: a. b a/\b (dans quelques notations algébriques, ou en APL) a&b ou a&&b (Perl, C, PHP, …) a AND b (Ada, Pascal, Python, …) a b f \bar { f} 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 OU: Elle est définie de la manière suivante: a OU b est VRAI si et seulement si a est VRAI ou b est VRAI, ou si a et b sont vrais. Cette loi est aussi notée: a+b a\/b (dans quelques notations algébriques ou en APL) a|b ou a||b (Perl, C, PHP, …) a OR b (Ada, Pascal, Python, …) a b f \bar { f} 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 NON: Le contraire de « a » est VRAI si et seulement si a est FAUX. Exercices corriges Leçon XIII : SYSTÈMES LOGIQUES COMBINATOIRES (pleine page ... pdf. Le contraire de a est noté: \bar { a} ~a (dans quelques notations algébriques ou en APL)! a (C, C++…) NOT a (ASM, Pascal, …) a f 0 1 1 0 OU EXCLUSIF: f = a ⊕ b a b f \bar { f} 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 Fonction booléenne (ou logique) On appelle fonction booléenne une fonction définie sur { 2}^{ n} combinaisons de n variables logiques. Une fonction logique est donc une fonction de n variables logiques, Une fonction logique peut prendre en sortie 2 valeurs notées 0 et 1.

Fonction Nand Et Nor Exercices Corrigés Du

B- Applications: Si on reprend la fonction du en haut, on peut écrire: Première forme canonique, on recherche les combinaisons des variables logiques sous la forme de somme de produit qui amènent la fonction logique à la valeur 1, f =1 si f = \bar { a}. c+a. \bar { c} +a. c Deuxième forme canonique, on recherche les combinaisons des variables logiques sous la forme de produit de somme qui amènent la fonction logique à la valeur 0, f =0 si f = (a+b+c). ( \bar { a} +b+c). (a+ \bar { b} +c). (a+b+ \bar { c}) a b c 1ère forme appliquée à f=0 2ème forme 0 0 0 \bar { a}. \bar { c} a+b+c 0 0 1 \bar { a}. c a+b+ \bar { c} 0 1 0 \bar { a}. Fonction nand et nor exercices corrigés pdf. \bar { c} a+ \bar { b} +c 1 0 0 a. \bar { c} \bar { a} +b+c Troisième forme canonique, on utilise la première forme canonique mais ici les fonctions logiques sont exprimées à l'aide UNIQUEMENT de portes NAND. f=\overline { \overline { \bar { a}. c}} f=\overline { \overline { (\bar { a}. c)}. \overline { (a. c)}} Quatrième forme canonique, on utilise la deuxième forme canonique mais ici les fonctions logiques sont exprimées à l'aide UNIQUEMENT de portes NOR f=\overline { \overline { (a+b+c).

Fonction Nand Et Nor Exercices Corrigés Pdf

Réalisation électrique Continuez votre lecture Offert: Guide du débutant Arduino Retourner au début de l'article Contact Copyright Positron-libre 2004-2022 Droits d'auteur enregistrés, numéro nº 50298.

Pour cela on utilise le bit de poids fort pour le signe: "1" pour les nombres négatifs et "0" pour les nombres positifs. Le codage suivant permet d'additionner des nombres quelconques, dans les limites de tailles des mots: |Nombre |Codage en complément | |décimal |à deux | |+3 |0 1 1 | |+2 |0 1 0 | |+1 |0 0 1 | |0 |0 0 0 | |-1 |1 1 1 | |-2 |1 1 0 | |-3 |1 0 1 | |-4 |1 0 0 | On a pour le codage: Exemple: Additionnons en complément à deux: -3+2=? 101 010 ---- 111 --> -1 Il existe des systèmes, où l'on a avantage à ce que d'une valeur à l'autre, il n'y ait qu'un seul bit qui varie. Ce n'est pas le cas du binaire, où pour passer de 1 à 2 par exemple, deux bits changent. Si un capteur produit une information codée, les transitions ne sont pas simultanées et on peut lire: 1 (001) ->3 (011) ->2 (010) ou bien: 1 (001) ->0 (000) ->2 (010). D'où le code Gray: |Nombre |Codage | |décimal |Gray | |0 |000 | |1 |001 | |2 |011 | |3 |010 | |4 |110 | |5 |111 | |6 |101 | |7 |100 | 1. Code BCD. Fonction nand et nor exercices corrigés pour. Le code binaire codé décimal (Binary Coded Decimal) consiste à coder en binaire chaque digit du code décimal.