Exercice Fonction Homographique 2Nd Column

Maison De Star A Miami

La fonction $f$ définie sur $]-\infty;1[\cup]1;+\infty[$ par $f(x)=\dfrac{2x+1}{x-1}$ est une fonction homographique. $a=2$, $b=1$, $c=1$ et $d=-1$ donc $ad-bc=2\times 1-1\times (-1)=2+1=3\neq 0$. On considère la fonction $g$ définie sur $]-\infty;-2[\cup]-2;+\infty[$ par $g(x)=2-\dfrac{x}{2x+4}$. On a alors $g(x)=\dfrac{2(2x+4)-x}{2x+4}=\dfrac{4x+8-x}{2x+4}=\dfrac{3x+8}{2x+4}$ $3\times 4-8\times 2 = 12-16=-4\neq 0$. Exercice fonction homographique 2nd ed. Donc $g$ est une fonction homographique. Remarque: Une fonction homographique est représentée graphiquement par deux branches d'hyperbole. Voici la représentation graphique de la fonction homographique $f$ définie sur $]-\infty;1[\cup]1;+\infty[$ par $f(x)=\dfrac{2x+1}{x-1}$

  1. Exercice fonction homographique 2nd column
  2. Exercice fonction homographique 2nd interplay clash
  3. Exercice fonction homographique 2nd ed
  4. Exercice fonction homographique 2nd in the dow
  5. Exercice fonction homographique 2nd march 2002

Exercice Fonction Homographique 2Nd Column

La fonction f\left(x\right)=2+\dfrac{1}{x-2} définie sur \mathbb{R}\backslash\left\{2 \right\} est-elle une fonction homographique? Oui, la fonction f est une fonction homographique. Exercice précédent

Exercice Fonction Homographique 2Nd Interplay Clash

Avant d'essayer de faire cette exercice sur la fonction fonction homographique on vous conseil de réviser le cours en cliquant ici. Énonce de l'exercice: Soit la fonction $f$ définie par: $f(x)=\frac{3x-1}{2x-2}$ et $C_f$ sa courbe représentative dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. 1- Déterminer $D_f$ le domain de définition de la fonction $f$ et vérifier que pour tout $x$ de $D_f$ on a: $f(x)=\frac{3}{2}+\frac{1}{x-1}$. Exercice Fonctions homographiques : Seconde - 2nde. 2- Déterminer les deux points d'intersection de $C_f$ (la courbe de $f$) avec les axes du repère $(O, \overrightarrow{i}, \overrightarrow{j})$. 3- Etudier les variation de $f$ sur les deux intervalles $]-\infty; 1[$ et $]1; +\infty[$. 4- Tracer $C_f$dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$. Correction de l'exercice par l'élève Hafsa Herba: —Fonctions homographiques Exercice 2 Par Youssef NEJJARI

Exercice Fonction Homographique 2Nd Ed

Le point $S$ de coordonnées $\left(-\dfrac{b}{2a};P\left(-\dfrac{b}{2a}\right)\right)$ est appelé sommet de la parabole. IV Et en pratique… Déterminer les coordonnées du sommet de la parabole Si $P(x)=x^2+8x-2$ alors $a=1, b=8$ et $c=-2$ Alors $\alpha=-\dfrac{8}{2\times 1} = -4$ et $P(-4) = -18$ Le sommet de la parabole est donc le point $S(-4;-18)$. Puisque $a=1>0$, cela correspond donc à un minimum. Déterminer l'expression algébrique quand on connaît deux points d'intersection de la parabole avec l'axe des abscisses Si la parabole coupe l'axe des abscisses aux points d'abscisses $-2$ et $4$ et passe par le point $A(2;4)$ La fonction polynomiale du second degré $P$ vérifie donc $P(-2)=P(4)=0$. Exercice fonction homographique 2nd column. Par conséquent, pour tous réel $x$, $P(x)=a\left(x-(-2)\right)(x-4)$ soit $P(x)=a(x+2)(x-4)$. On sait que $A(2;4)$ appartient à la parabole. Donc $P(2)=4$. Or $P(2) = a(2+2)(2-4)=-8a$ donc $-8a=4$ et $a=-\dfrac{1}{2}$ Par conséquent $P(x)=-\dfrac{1}{2}(x+2)(x-4)$. Si on développe: $$\begin{align*} P(x)&=-\dfrac{1}{2}(x+2)(x-4) \\ &=-\dfrac{1}{2}\left(x^2-4x+2x-8\right) \\ &=-\dfrac{1}{2}\left(x^2-2x-8\right) \\ &=-\dfrac{1}{2}x^2+x+4 Déterminer l'expression algébrique quand on connaît les coordonnées du sommet et un point de la parabole.

Exercice Fonction Homographique 2Nd In The Dow

$\quad$ I Fonctions polynôme du second degré Définition 1: On appelle fonction polynôme du second degré toute fonction $P$ définie sur $\R$ par $P(x)=ax^2+bx+c$ où $a, b$ et $c$ sont des réels tels que $a\neq 0$. Remarque: On parle également de fonction polynomiale du second degré ou de degré $2$. Exemples: $\bullet $ $P$ définie sur $\R$ par $P(x)=2x^2-3x+5$ est une fonction polynôme du second degré. $a=2, b=-3$ et $c=5$. $\bullet $ $P$ définie sur $\R$ par $P(x)=x^2+2$ est une fonction polynôme du second degré. $a=1, b=0$ et $c=2$. $\bullet $ $P$ définie sur $\R$ par $P(x)=-x^2+5x$ est une fonction polynôme du second degré. $a=-1, b=5$ et $c=0$. $\bullet $ $P$ définie sur $\R$ par $P(x)=4x^3-3x^2+4x-1$ n'est pas une fonction polynôme du second degré. Il s'agit en fait d'une fonction polynôme du troisième degré. $\bullet$ $P$ définie sur $\R$ par $P(x)=4x+2$ n'est pas une fonction polynôme du second degré. 2nd-Cours-second degré et fonctions homographiques. Il s'agit d'un polynôme du premier degré (ou fonction affine). $\bullet$ $P$ définie sur $\R$ par $f(x)=x^2+2x-\dfrac{1}{x}$ n'est pas une fonction polynôme du second degré.

Exercice Fonction Homographique 2Nd March 2002

$\bullet$ si $\alpha \le x_10$ $\bullet$ un maximum en $-\dfrac{b}{2a}$ si $a<0$ III Représentation graphique Propriété 4: On considère une fonction polynôme du second degré $P$ définie sur $\R$ par $P(x)=ax^2+bx+c$. Dans un repère orthonormé, la représentation graphique de la fonction $P$ est une parabole et la droite d'équation $x=-\dfrac{b}{2a}$ est un axe de symétrie.

Pour déterminer les solutions de l'inéquation f ( x) < 1 f\left(x\right)<1, il nous faut donc résoudre l'inéquation 3 x + 5 x − 3 < 0 \frac{3x+5}{x-3} <0. Pour cela nous allons dresser un tableau de signe. Tout d'abord, il est important de rappeler que 3 3 est la valeur interdite donc que l'ensemble de définition est D =] − ∞; 3 [ ∪] 3; + ∞ [ D=\left]-\infty;3\right[\cup \left]3;+\infty \right[. D'une part: \red{\text{D'une part:}} 3 x + 5 = 0 3x+5=0 équivaut successivement à: 3 x = − 5 3x=-5 x = − 5 3 x=\frac{-5}{3} Soit x ↦ 3 x + 5 x\mapsto 3x+5 est une fonction affine croissante car son coefficient directeur a = 3 > 0 a=3>0. Fonction Homographique : exercice de mathématiques de seconde - 482873. Cela signifie que la fonction MONTE donc on commencera par le signe ( −) \left(-\right) puis ensuite par le signe ( +) \left(+\right) dans le tableau de signe. Bien entendu n'écrivez pas ces deux phrases en gras sur votre copie, c'est pour vous expliquer comment on remplit le signe de la fonction x ↦ 3 x + 5 x\mapsto 3x+5. D'autre part: \red{\text{D'autre part:}} x − 3 = 0 x-3=0 équivaut successivement à: x = 3 x=3 Soit x ↦ x − 3 x\mapsto x-3 est une fonction affine croissante car son coefficient directeur a = 1 > 0 a=1>0.