Exercice Maximum De Vraisemblance

Ongles Striés En Long Homéopathie

theorie des langages - Moodle Département d' informatique... CORRIGÉ ABREGÉ DE LA SÉRIE D' EXERCICES n o... n11, n? 0}: 0... Table de transition de l' automate déterministe équivalent à B:..... On va représenter un automate d'états finis simple déterministe par un...

  1. Exercice maximum de vraisemblance paris

Exercice Maximum De Vraisemblance Paris

A te lire. #7 26-10-2010 08:36:51 Re, je viens d'avoir une début de lueur d'espoir de compréhension. OK, tu as p=0. 37 et tu cherches N, taille de la population d'origine. OK pour la somme de N (inconnu) v. a de bernoulli INDEPENDANTES (important à préciser) de paramètre p, et donc tu formes la prob(m=235). Tu vas trouver une formule compliquée en N => utiliser la formule de Stirling pour approximer les factorielles puis tu appliques le théorème de l'emv. Exercice corrigé TD n 7 Maximum de vraisemblance, tests et modèles linéaires - IRMA pdf. A te lire, freddy Dernière modification par freddy (26-10-2010 08:37:15) #8 27-10-2010 16:29:24 Re, on finit le boulot ( car on n'aime pas laisser trainer un sujet pas fini). Donc p est connu et N est inconnu. On cherche son EMV. On calcule la vraisemblance: [tex]L(N;p, m)=P(m=235)=\frac{N! }{m! (N-m)}\times p^m\times (1-p)^{N-m}[/tex] Pour les factorielles, on utilise l'approximation de Stirling: [tex] N! \equiv \sqrt{2\pi N}\times \left(\frac{N}{e}\right)^N[/tex] On trouve alors la fonction de vraisemblance suivante: [tex]L(N;p, m)=\frac{\sqrt{2\pi}}{2\pi}\times \exp\left((-m-\frac12)\ln(m)+m\ln(p)\right)\times f(N) [/tex] [tex]f(N)=\exp\left((N+\frac12)\ln(N)-(N-m+\frac12)\ln(N-m)+(N-m)\ln(1-p)\right)}[/tex] On prend soin de bien isoler l'inconnue N du reste.

\end{align*}\]$ Il suffit donc de dériver les deux premiers termes par rapport à $\(\theta\)$ pour déterminer l'extremum (et on vérifie qu'il s'agit bien d'un maximum! ): $\[\frac{\partial \ell\left( x_{1}, \ldots, x_{n};\theta\right)}{\partial\theta}=\frac{n}{\theta}-\sum_{i=1}^n x_{i}\]$ On obtient: $\[\frac{\partial \ell\left( x_{1}, \ldots, x_{n};\theta\right)}{\partial\theta}=0 \quad\Leftrightarrow\quad\theta_{MV}=\frac{n}{\sum_{i=1}^n x_{i}}=\frac{1}{\overline{x}}\]$ $\(\frac{1}{\overline{X}}\)$ est donc l'estimateur du maximum de vraisemblance de $\(\theta\)$. Méthode des moments On aurait également pu obtenir cette solution par la méthode des moments en notant que pour une loi $\(\mathcal{E}\left( \theta\right)\)$: $\[\mathbb{E}\left(X\right)=\frac{1}{\theta}\]$ Il suffisait de considérer les fonctions: $\[m\left( \theta\right)=\frac{1}{\theta}\]$ Notons qu'on aurait également pu se baser sur le résultat suivant: $\(\mathbb{E}\left(X^2\right)=\frac{2}{\theta^2}\)$ pour obtenir un autre estimateur, mais celui-ci aurait été moins performant que l'estimateur du maximum de vraisemblance.