Nombre Dérivé Exercice Corrigé

Rillettes De Canard Au Foie De Canard

L'équation de la tangente à la parabole C f \mathscr C_{f} au point d'abscisse 0 0 est donc: y = 3 x − 4 y=3x - 4

  1. Nombre dérivé exercice corrigé a la
  2. Nombre dérivé exercice corrigés

Nombre Dérivé Exercice Corrigé A La

Exercice 1 On considère une fonction $f$ dérivable sur $\R$ dont la représentation graphique $\mathscr{C}_f$ est donnée ci-dessous. Le point $A(0;2)$ appartient à cette courbe et la tangente $T_A$ à $\mathscr{C}_f$ au point $A$ passe également par le point $B(2;0)$. Déterminer une équation de la droite $T_A$. $\quad$ En déduire $f'(0)$. Correction Exercice 1 Une équation de la droite $T_A$ est de la forme $y=ax+b$. Les points $A(0;2)$ et $B(2;0)$ appartiennent à la droite $T_A$. Nombre dérivé exercice corrigés. Donc $a=\dfrac{0-2}{2-0}=-1$. Le point $A(0;2)$ appartient à $T_A$ donc $b=2$. Ainsi une équation de $T_A$ est $y=-x+2$. Le coefficient directeur de la tangente à la courbe $\mathscr{C}_f$ au point d'abscisse $0$ est $f'(0)$. Par conséquent $f'(0)=-1$. [collapse] Exercice 2 La tangente à la courbe $\mathscr{C}_f$ au point $A(1;3)$ est parallèle à l'axe des abscisses. Déterminer $f'(1)$. Correction Exercice 2 La droite $T_A$ est parallèle à l'axe des abscisses. Puisque $T_A$ est la tangente à la courbe $\mathscr{C}_f$ au point d'abscisse $1$, cela signifie que $f'(1)=0$.

Nombre Dérivé Exercice Corrigés

Corrigé expliqué \(f\) est dérivable si \(x^2 - 4 > 0\) donc sur \(]- ∞\, ; -2[ ∪]2\, ;+∞[. \) Ainsi elle est dérivable en 3. \(\frac{f(3 + h) - f(3)}{h}\) \(= \frac{\sqrt{(3 + h)^2-4} - \sqrt{9 - 4}}{h}\) Utilisons les quantités conjuguées. \(= \frac{(\sqrt{(3+h)^2 - 4}-\sqrt{5})(\sqrt{(3+h)^2 - 4}+\sqrt{5})}{h(\sqrt{(3+h)^2 - 4}+\sqrt{5})}\) \(= \frac{(3+h)^2 - 4 - 5}{ h(\sqrt{(3+h)^2 - 4}+\sqrt{5})}\) Développons l' identité remarquable du numérateur. \(=\frac{9 + 6h + h^2 - 9}{ h(\sqrt{(3+h)^2-4}+\sqrt{5})}\) \(=\frac{6 + h}{ \sqrt{(3+h)^2-4}+\sqrt{5}}\) \(\mathop {\lim}\limits_{h \to 0} \frac{6 + h}{ \sqrt{(3+h)^2-4}+\sqrt{5}}\) \(=\) \(\frac{6}{\sqrt{5} + \sqrt{5}}\) \(=\) \(\frac{6}{2\sqrt{5}}\) \(=\) \(\frac{3}{\sqrt{5}}\) Démonstration Démontrer la formule de l'équation de la tangente en un point de la courbe représentative. Nombre dérivé exercice corrigé. Soit \(f\) une fonction définie sur un intervalle contenant le réel \(a. \) L'équation de la tangente à la courbe représentative de\(f\) au point d'abscisse \(a\) est: \(y = f(a) + f'(a)(x - a)\) Par définition, la tangente est une droite dont le coefficient directeur est \(f'(a).

Pour déterminer l'expression de $f'$ on applique la formule $\left(\dfrac{u}{v}\right)'=\dfrac{u'v-uv'}{v^2}$ avec $u(x)=x+1$ et $v(x)=x-1$. Donc $u'(x)=1$ et $v'(x)=1$. $\begin{align*} f'(x)&=\dfrac{x-1-(x+1)}{(x-1)^2} \\ &=\dfrac{-2}{(x-1)^2} Donc $f'(2)=-2$ De plus $f(2)=3$ Une équation de la tangente est par conséquent $y=-2(x-2)+3$ soit $y=-2x+7$. La fonction $f$ est dérivable sur $]-\infty;2[\cup]2;+\infty[$. Une équation de la tangente à $\mathscr{C}$ au point d'abscisse $a=-2$ est $y=f'(-2)\left(x-(-2)\right)+f(-2)$. Pour dériver la fonction $f$ on utilise la formule $\left(\dfrac{1}{u}\right)'=-\dfrac{u'}{u^2}$. $\begin{align*} f'(x)&=1+4\left(-\dfrac{1}{(x-2)^2}\right) \\ &=1-\dfrac{4}{(x-2)^2} Donc $f'(-2)=\dfrac{3}{4}$ De plus $f(-2)=-1$ Une équation de la tangente est par conséquent $y=\dfrac{3}{4}(x+2)-1$ soit $y=\dfrac{3}{4}x+\dfrac{1}{2}$. Cours sur la dérivation et exercices corrigés sur les dérivées 1ère-terminale - Solumaths. Exercice 5 On considère la fonction $f$ définie sur $\R$ par $f(x)=ax^2+2x+b$ où $a$ et $b$ sont deux réels. Déterminer les valeurs de $a$ et $b$ telles que la courbe représentative $\mathscr{C}_f$ admette au point $A(1;-1)$ une tangente $\Delta$ de coefficient directeur $-4$.