Exercices De Maths De Niveau Seconde

Climatiseur À Travers Le Mur

Exemples 1. Pour, on résout l' inéquation 14-7x≥0. On trouve x≤2 donc D=]-∞;2]. 2. Pour, on résout l' équation 2x-8=0. On trouve x=4, donc D=]-∞, 4[U]4;+∞[. Variation de fonction Voyons maintenant ce que sont les fonctions croissantes et décroissantes. Fonction croissante Si, sur un intervalle de l'axe des abscisses, la courbe d'une fonction monte, alors on dit que cette fonction est croissante sur cet intervalle. Une fonction croissante est une fonction qui conserve l'ordre des images: si a et b sont deux nombres tels que af(b). Tableau de variation Pour représenter et visualiser les variations d'une fonction, on utilise un tableau de variation. Un tableau de variation est un tableau composé de deux lignes et de plusieurs colonnes: La première ligne contient les valeurs de l'ensemble de définition et les valeurs pour lesquelles les variations changent.

Exercice Sur Les Fonctions Seconde Le

Donc cette équation a pour ensemble de solution: 15 000. d) Comme la fonction est définie sur un ensemble de réels, alors la solution d'une inéquation de la forme ou est un intervalle ou une réunion d'intervall es. Elle peut s'écrire également sous la forme d'inégalités. Par lecture graphique: 20 000 a pour solution l'ensemble de réels tels que ou. Sous forme d'intervalle, on peut écrire: 20 000 pour 15 000 a pour solution l'ensemble de réels tels que. Sous forme d'intervalle, on peut écrire: 15 000 pour Vous pouvez continuer de vous entraînez en retrouvant la suite des exercices sur l'application Prepapp. Vous y trouverez également les exercices de seconde de maths sur les fonctions affines, l'arithmétiques etc..

Exercice Sur Les Fonctions Seconde Les

On cherche donc la (ou les) valeur(s) interdite(s): D'où: D f =. 4.. Il faut que l'expression sous la racine soit positif ou nul et que le dénominateur soit non nul:. Etudions le signe de: Tableau de signes: D'où:. exercice 2 1. D f = D g =. On reconnaît l'identité remarquable (a + b)² = a² + 2ab + b² Donc D'où: 2. D f = et D g = Or, pour que deux fonctions soient égales il faut qu'elles le soient pour TOUTES les valeurs de. Pour, n'est pas définie et l'est. De plus, D'où: exercice 3 L'ensemble de définition de la fonction est symétrique par rapport à 0. Pour tout appartenant à D f, f D'où: la fonction est impaire. Pour tout appartenant à D f, D'où: la fonction est paire. Donc: et. D'où: n'est ni paire ni impaire. Pour tout x appartenant à D f, 6. exercice 4 1.. S 1 = {1} et S 2 =]-; 1[. 3.. exercice 5 1. f(x) = -x + 2 Soient a et b deux réels tels que a < b, alors: -a > -b et -a + 2 > -b + 2 D'où: a < b entraîne f(a) > f(b): f est décroissante sur 2. f(x) = 3x² Soient a et b deux réels de tels que a < b 0, alors: f(a) - f(b) = 3a² - 3b² = 3(a² - b²) = 3(a - b)(a + b) Comme a et b sont deux réels négatifs, alors a + b < 0.

Exercice Sur Les Fonctions Seconde En

Ainsi le couple $\left(-2;\dfrac{2}{3}\right)$ vérifie la relation $(E)$. Si $a=1$ alors: $f(a+b)=\dfrac{1}{1+b}$ $f(a)\times f(b)=1\times \dfrac{1}{b}$ On doit donc résoudre l'équation: $\dfrac{1}{1+b}=\dfrac{1}{b}\ssi 1+b=b$ qui n'a pas de solution. Aucun coupe de la forme $(1;b)$ ne vérifie la relation $(E)$. On suppose que le coupe $(a;b)$ vérifie la relation $(E)$. On a alors: $\begin{align*} f(a+b)=f(a)\times f(b) &\ssi \dfrac{1}{a+b}=\dfrac{1}{a}\times \dfrac{1}{b} \\ &\ssi \dfrac{1}{a+b}=\dfrac{1}{ab} \\ &\ssi a+b=ab \quad a\neq 0, ~~ b\neq 0\\ &\ssi a=ab-b \quad a\neq 0, ~~ b\neq 0\\ &\ssi a=(a-1)b \quad a\neq 0, ~~ b\neq 0\\ &\ssi b=\dfrac{a}{a-1}\quad a\neq 0\end{align*}$ D'après la question précédente, on ne peut pas trouver de couple solution s'écrivant sous la forme $(1, b)$. Par conséquent le dénominateur $a-1$ n'est jamais nul. Exercice 6 On dispose d'un carré en métal de $40$ cm de côté. Pour construire une boîte parallélépipédique, on retire à chaque coin un carré de côté $x$ cm et on relève les bords par pliage (voir figure).

Déterminer les antécédents éventuels de $0$ par $f$. Résoudre l'équation $f(x)=40$. Le nombre $-10$ possède-t-il un ou des antécédent(s) par $f$? Justifier la réponse. Correction Exercice 7 $f(x)=(x-7)^2-3^2=\left[(x-7)-3\right][\left[(x-7)+3\right]=(x-10)(x-4)$. On retrouve bien la forme factorisée fournie par logiciel. $f(x)=x^2-14x+49-9=x^2-14x+40$. On retrouve bien la forme développée fournie par logiciel. $f(0) = 0^2-14\times 0 + 40 = 40$. $f(7)=(7-7)^2-9=-9$ On veut résoudre $f(x)=0$. On utilise la forme factorisée: $(x-10)(x-4)=0$. Un produit de facteurs est nul si, et seulement si, un de ses facteurs est nul. On a donc $x-10=0$ ou $x-4=0$. Les solutions sont $10$ et $4$. Par conséquent les antécédents de $0$ sont $10$ et $4$. $\begin{align*} f(x)=40 &\ssi x^2-14x+40=40 \\ &\ssi x^2-14x=0 \\ &\ssi x(x-14)=0 \end{align*}$ On a donc $x=0$ ou $x-14=0$. Les solutions de l'équation sont par conséquent $0$ et $14$. On veut résoudre l'équation $f(x)=-10$ soit $(x-7)^2-9=-10$ ou encore $(x-7)^2=-1$.