Fiche De Révision Nombre Complexe

Méditation Cédric Michel Guérison

Fiche de révisions n°1: Les nombres complexes M. JACQUIER BTS IRIS T. D. N°1: LES NO MBRES COMPLEXES 1 EXERCICE 1 Déterminer le module et l'argument de chacun des nombres complexes: 1. z1 = -1 + i 3 2. z2 = 1 + cos q + i sin q EXERCICE 2 Calculer le nombre z = (2 - 3i)(1 + 2i)(3 - 2i)(2 + i) EXERCICE 3 k étant un nombre réel donné, mettre sous la forme a + ib le nombre z = 1 + ki. 2k + (k2 - 1)i EXERCICE 4 Déterminer le module et l'argument du nombre complexe z = 1+i 3. 3+i EXERCICE 5 1 On donne z1 = ( 6 - i 2) et z2 = 1 - i. 2 Déterminer le module et l'argument de Z = z1. z2 Exprimer Z sous la forme algébrique. En déduire les valeurs de cos p et sin. 12 EXERCICE 6 Montrer que la formule de Moivre est valable pour n entier négatif. EXERCICE 7 A partir de l'égalité cos q = eiq + e-iq linéariser cos4 q, c'est-à-dire exprimer cos4 q comme combinaison linéaire de sinus et cosinus des arcs multiples de q. EXERCICE 8 Déterminer les racines quatrièmes de i. EXERCICE 9 Calculer les racines carrées du nombre complexe 5 + 12i.

Fiche De Révision Nombre Complexe Aquatique

Déterminer les coordonnées du milieu d'un segment. II Les équations dans \mathbb{C} Les équations du premier degré d'inconnue z à coefficients réels se résolvent dans \mathbb{C} comme dans \mathbb{R}. Les équations du premier degré faisant intervenir un nombre complexe z et son conjugué \overline{z} se résolvent en remplaçant z et \overline{z} par leurs formes algébriques. Équations du second degré Soit une équation du second degré à coefficients réels du type az^{2} + bz + c, avec a \neq 0.

Fiche De Révision Nombre Complexe De La

Quelle est la forme algébrique d'un nombre complexe? Quelle est la partie réelle? La partie imaginaire? Qu'est-ce que le conjugué d'un nombre complexe? Comment représente-t-on graphiquement un nombre complexe? Qu'est-ce que le module et un argument d'un nombre complexe? Comment s'interprètent-ils graphiquement? Quelles sont les propriétés des conjugués, des modules et des arguments (produit, etc…)? Comment obtient-on la forme trigonométrique d'un nombre complexe? La forme exponentielle? Comment s'obtient la distance A B AB à partir des affixes des points A A et B B? Quels sont les arguments possibles pour un nombre réel? un nombre imaginaire pur? Quelles sont, dans C \mathbb{C}, les solutions de l'équation a z 2 + b z + c = 0 az^2+bz+c=0? Rappels de collège utiles pour certains exercices portant sur les nombres complexes. A A et B B désignent des points du plan. Quel est l'ensemble des points M M tels que A M = B M AM=BM? Quel est l'ensemble des points M M tels que A M = k AM=k (où k k est un réel donné)?

Fiche De Révision Nombre Complexe Et

Nombre complexe Théorème admis: Il existe un ensemble de nombres, noté C ℂ et appelé ensemble des nombres complexes: L'ensemble C ℂ contient R \mathbb{R}; On définit dans C ℂ une addition et une multiplication qui suivent les mêmes règles de calcul que dans R \mathbb{R}; Il existe dans C ℂ un nombre i i tel que i 2 = − 1 i^2=-1; Tout élément z z de C ℂ s'écrit de manière unique z = a + i b z=a+ib avec a a et b b des réels. Définition: forme algébrique L'écriture z = a + i b z=a+ib avec a a et b b réels est appelée forme algébrique de z z. a a est la partie réelle de z z notée a = R ( z) a=R(z), et b b est la partie imaginaire de z z, notée b = I ( z) b=I(z). Propriétés: calcul avec des nombres complexes Égalité: deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire.

Fiche De Révision Nombre Complexe En

Les nombres complexes sont posés sur l'axiome: \\({i}^{2}=-1)\\. 1. Trois écritures pour un même nombre. Les nombres complexes peuvent être écrits de trois manières différentes - Forme algébrique: \\(z=x+iy)\\, \\(x)\\ et \\(y\in R)\\ x est la partie entière réelle notée \\({Re}_{z})\\ y est la partie imaginaire notée Im\\({g}_{z})\\ - Forme trigonométrique: \\(z=r\left(\cos \theta +i\sin \theta \right))\\ \\(x \in R\ast)\\, et \\(\theta)\\est un angle en radian r est le module de z, c'est-à-dire la distance du point à zéro \\(\theta)\\ est l'argument de z, c'est-à-dire l'angle \\(\left(\vec{Ox};\vec{Oz} \right))\\. - Forme exponentielle: \\(z={re}^{i \theta})\\ Il s'agit d'une écriture différente de la forme trigonométrique, permettant d'effectuer plus facilement des calculs d'angles. 2. Passer de la forme algébrique à la forme trigonométrique Etape 1: Calculer le module \\(z=x+iy)\\ \\(r=\left|z \right|=\sqrt{{x}^{2}+{y}^{2}})\\ Etape 2: Calculer \\(\cos \theta =\frac{x}{\left|z \right|})\\ \\(\sin \theta =\frac{x}{\left|z \right|})\\ Il est indispensable de calculer les deux Etape 3: Déterminer \\(\theta)\\ Grâce aux valeurs de \\(\cos \theta)\\ et \\(\sin \theta)\\, il est possible de déterminer \\(\theta)\\ Les valeurs courantes sont les suivantes: \\( \theta\epsilon[0;2\pi[)\\ donc il est impossible de savoir combien de tours complets le vecteur a réalisé.

Soit l'équation où a est un réel non-nul et b, c des réels. L'équation En posant,, on obtient une équation du type Z 2 = k dont les solutions varient en fonction du signe de k, c'est-à-dire, du signe de Δ. Les cas sont connus depuis la classe de première. Le cas donne