Nombres Réels - Lesmath: Cours Et Exerices

Gestion En Temps Réel

Publicité Exercices corrigés sur les sous-suites de nombres réels et application du théorème de Bolzano-Weierstrass. En fait, les suites extraites jouent un rôle important dans la théorie d'approximation. Aussi il intervient dans pour résoudre des égalités fonctionnelles. Rappel sur les sous-suites Une sous suite d'une suite réelle $(u_n)$ est une suite de la forme $(u_{varphi(n)})$ avec $varphi:mathbb{N}to mathbb{N}$ une fonction strictement croissante. Examples: Si on pends $varphi(n)=2n$ ou bien $varphi(n)=2n+1$, alors on a deux suites $(u_{2n})$ et $(u_{2n+1})$. Un autre exemple $varphi(n)=n^3, $ alors $(u_{n^3})$ et aussi une soute de $(u_n)$ (il faut noter que chaque suite admet un nombre infini de sous-suites). La sous-suite et parfois appelée la suite extraite. Exercice corrigé Suites ? Limite de suite réelle Exercices corrigés - SOS Devoirs ... pdf. On rappel que si la suite $(u_n)$ converge vers $ellinmathbb{R}$ alors toutes les sous-suites convergent aussi vers $ell$. Inversement, si toutes les sous-suites d'une suite converge vers un seule réel, alors la suite mère converge aussi vers cette valeur.

Suites De Nombres Réels Exercices Corrigés Pour

Exercice 2: conjecture de la limite d'une suite définie par récurrence (avec tableur et algorithme)... Exercice 16: convergence d'une suite croissante majorée. Feuilles d'exercices n? 6: Convergence de suites - 4 nov. 2011... 6. Si (|un|) converge vers 0, alors (un) aussi. Exercice 2 (* à **). Étudier la convergence et déterminer la limite éventuelle de chacune des suites... Mathématique D2 - Collège Don Bosco Chapitre 12? Fractions. Résoudre un problème. (1) NNNNNN. | + | H en e. 6 _ 1 1 2 15 _ 5. 18 7 3 4 9 18 7 6. | | 2 5. 0, 3

Suites De Nombres Réels Exercices Corrigés De La

Si est une partie non vide de ssi et. exemple: si sont réels et vérifient, est un intervalle borné, admettant une borne supérieure, mais pas de plus grand élément, et admet un plus petit élément égal à. Si, est l'unique élément de tel que. C'est aussi l'unique élément de tel que. C'est l'unique élément de tel que où. Pour tout, vérifie. On dit que est la valeur approchée par défaut de à près et que est la valeur approchée par excès de à près. La suite est une suite de rationnels qui converge vers. La fonction est croissante sur et vérifie. Suites de nombres réels exercices corrigés de. Conséquence pour démontrer qu'une expression dépendant de la partie entière est nulle, il suffit de trouver une période de et de démontrer que si. exemple Correction Soit. En utilisant, On obtient pour tout,. est 1-périodique Si et, Si et,.. Par 1-périodicité, le résultat est valable pour tout réel. 7. Intervalle de Pour démontrer que qu'une partie non vide de est un intervalle de, on prouve que si avec c'est à dire que. Tout intervalle ouvert non vide de contient un rationnel (et un décimal) et un irrationnel.

Enoncé Quelles sont les valeurs d'adhérence de la suite $(-1)^n$? de la suite $\cos(n\pi/3)$? Donner un exemple de suite qui ne converge pas et qui possède une unique valeur d'adhérence. Enoncé Soit $(u_n)$ une suite bornée de nombre réels. Pour tout $n\in\mathbb N$, on pose $$x_n=\inf\{u_p;\ p\geq n\}\textrm{ et}y_n=\sup\{u_p;\ p\geq n\}. $$ Pourquoi les suites $(x_n)$ et $(y_n)$ sont-elles bien définies? Déterminer les suites $(x_n)$ et $(y_n)$ dans les cas suivants: $$\mathbf a. Suites de nombres réels exercices corrigés de la. \ u_n=(-1)^n\quad \mathbf b. \ u_n=1-\frac1{n+1}. $$ Démontrer que $(x_n)$ est croissante, que $(y_n)$ est décroissante. En déduire que ces deux suites sont convergentes. On notera $\alpha=\lim_{n\to+\infty} x_n$ et $\beta=\lim_{n\to+\infty}y_n$. Démontrer que $\alpha\leq \beta$. Démontrer que si $\alpha=\beta$, alors la suite $(u_n)$ converge. Démontrer que si $(u_n)$ admet une sous-suite convergeant vers un réel $\ell$, alors $\alpha\leq \ell\leq \beta$. Démontrer que, pour tout $\veps>0$ et pour tout $n\in\mathbb N$, il existe $p\geq n$ tel que $$y_n-\veps\leq u_p\leq y_n.