Exercice 5 Sur Le Pgcd

Actuel Khalife Général Des Tidianes

Accueil Soutien maths - Plus grand commun diviseur Cours maths 3ème Ce cours a pour objectifs de travailler autour des définitions de multiples et diviseurs d'un nombre et d'introduire la notion de PGCD et les algorithmes de recherche du PGCD de deux nombres (algorithme des différences et algorithmes d'Euclide). Diviseurs et multiples Pour deux nombres entiers n et d non nuls, d est un diviseur de n signifie qu'il existe un nombre entier q tel que n = q × d. On dit aussi que n est divisible par d ou que n est n est un multiple de d. Remarques: Si d est un diviseur de n alors le reste de la division euclidienne de n par d est égal à zéro. Exemples: 7 est un diviseur de 91 car 91 = 7 × 13. De même, 13 est un diviseur de 91. Remarque importante: 1 est un diviseur de tout nombre entier. Applications 1) 324 est divisible par: 2) 1 140 est divisible par: 3) 945 est un multiple de: 4) 523 480 est un multiple de: Plus grand diviseur commun Définition: Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux.

Exercice Diviseur Commun La

I – Définition et méthode PGCD: Le PGCD de deux nombres entiers naturels, est le plus grand diviseur commun de ces deux nombres. Il y a 3 méthodes utilisées pour trouver ce dernier. Méthode 1: Les diviseurs 1. Etablir la liste des diviseurs des deux nombres 2. On repère tous les diviseurs communs 3. On trouve le plus grand diviseur commun qui est le PDCD de ces deux nombres. Exemple: trouver le PGCD de 48 et 64 1. Diviseurs de 48: 1; 48; 2; 24; 3; 16; 4; 12; 6; 8 (Ici on utilise les produits égaux à 48, et on s'arrête à 6 x 8 car le premier facteur dépasserait le second) Diviseurs de 64: 1; 64; 2; 32; 4; 16; 8 (Ici on utilise les produits égaux à 64, et on s'arrête à 8 x 8 car le premier facteur dépasserait le second) 2. Les diviseurs communs: 1; 2; 4; 8; 16 3. On a donc PGCD(48;64) = 16 Méthode 2: L'algorithme des soustractions successives 1. Faire la différence entre le nombre le plus grand et le nombre le plus petit 2. Puis faire la différence entre les deux nombres les plus petits à chaque fois en faisant de sorte de soustraire le plus petit au plus grand jusqu'au résultat nul.

Exercice Diviseur Commun Dans

Diviseur commun à deux entiers PGCD - Réviser le brevet Select Page: Select Category: Nous utilisons des cookies pour vous garantir la meilleure expérience sur notre site. Si vous continuez à utiliser ce dernier, nous considérons que vous acceptez l'utilisation des cookies En savoir plus

Exercice Diviseur Commun Le

Exemple: 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. p> Si a et b désignent deux nombres entiers, on note PGCD (a; b) le plus grand des diviseurs positifs à a et b. Exemple: Rechercher le PGCD de 24 et 36 La liste des diviseurs de 24 est: La liste des diviseurs de 36 est: 24 et 36 ont 6 diviseurs communs: 1; 2; 3; 4; 6 et 12 Le plus grand d'entre eux est 12 donc PGCD (24; 36) = 12 Problème Quel est le PGCD de 1 326 et 546? Méthode: on cherche tous les diviseurs de 1 326 puis tous les diviseurs de 546 et ainsi nous pourrons déterminer le plus grand diviseur commun. Problème: la recherche de TOUS les diviseurs d'un nombre entier est souvent longue et fastidieuse. Solution: nous allons voir des algorithmes de recherche qui nous permettront un travail plus rapide. Algorithme des différences Exemple: Déterminer PGCD (1 326; 546). 1) Soustraire le plus petit des deux nombres au plus grand: 2) On prend les deux plus petits et on recommence: 3) On continue jusqu'à obtenir un résultat nul: Le plus grand diviseur est le dernier reste non nul dans la succession des différences de l'algorithme Ici, PGCD ( 1 326; 546) = 78 Algorithme d'Euclide: méthode ● 1) On effectue la division euclidienne du plus grand des deux nombres par le plus petit.

Une page de Wikiversité, la communauté pédagogique libre. Aller à la navigation Aller à la recherche Exercice 3-1 [ modifier | modifier le wikicode] Pour chacun des entiers naturels a et b donnés, trouver l'ensemble des diviseurs D(a) et D(b). Déduisez-en le PGCD de a et b. 1° a = 48; b = 32. 2° a = 120; b = 168. 3° a = 60; b = 96. Solution 1° a = 2 4 ×3 donc D(a) = {2 p ×3 q | 0 ≤ p ≤ 4 et 0 ≤ q ≤ 1}. b = 2 5 donc D(b) = {2 p | 0 ≤ p ≤ 5}. D(a)∩D(b) = {2 p | 0 ≤ p ≤ 4} donc pgcd(a, b) = 2 4 = 16. 2° a = 2 3 ×3×5 donc D(a) = {2 p ×3 q ×5 r | 0 ≤ p ≤ 3, 0 ≤ q ≤ 1 et 0 ≤ r ≤ 1}. b = 2 3 ×3×7 donc D(b) = {2 p ×3 q ×7 r | 0 ≤ p ≤ 3, 0 ≤ q ≤ 1 et 0 ≤ r ≤ 1}. D(a)∩D(b) = {2 p ×3 q | 0 ≤ p ≤ 3 et 0 ≤ q ≤ 1} donc pgcd(a, b) = 2 3 ×3 = 24. 3° a = 2 2 ×3×5 donc D(a) = {2 p ×3 q ×5 r | 0 ≤ p ≤ 2, 0 ≤ q ≤ 1 et 0 ≤ r ≤ 1}. b = 2 5 ×3 donc D(b) = {2 p ×3 q | 0 ≤ p ≤ 5 et 0 ≤ q ≤ 1}. D(a)∩D(b) = {2 p ×3 q | 0 ≤ p ≤ 2 et 0 ≤ q ≤ 1} donc pgcd(a, b) = 2 2 ×3 = 12. Exercice 3-2 [ modifier | modifier le wikicode] Dans les exemples suivants, indiquez si les nombres a et b sont premiers entre eux.