Exercice Diviseur Commun

Communication Médecin Malade

La correction exercice algorithme (voir page 2 en bas) Pages 1 2

Exercice Diviseur Commun Sur

3ème – Exercices à imprimer – Exercice 1: Critères de divisibilité. Exercice 2: PGCD. Diviseurs communs et PGCD | Arithmétique | Cours 3ème. Donner la liste des diviseurs de 58 puis de 98. Donner la liste de diviseurs communs de 58 et de 98 et déduire leur PGCD. Exercice 3: PGCD. Exercice 4 et 5: Nombres premiers entre eux ou pas. Divisibilité et recherche des diviseurs communs – 3ème – Exercices corrigés rtf Divisibilité et recherche des diviseurs communs – 3ème – Exercices corrigés pdf Correction Correction – Divisibilité et recherche des diviseurs communs – 3ème – Exercices corrigés pdf Autres ressources liées au sujet

Exercice Diviseur Commun Le

Exemple: 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. p> Si a et b désignent deux nombres entiers, on note PGCD (a; b) le plus grand des diviseurs positifs à a et b. Exemple: Rechercher le PGCD de 24 et 36 La liste des diviseurs de 24 est: La liste des diviseurs de 36 est: 24 et 36 ont 6 diviseurs communs: 1; 2; 3; 4; 6 et 12 Le plus grand d'entre eux est 12 donc PGCD (24; 36) = 12 Problème Quel est le PGCD de 1 326 et 546? Méthode: on cherche tous les diviseurs de 1 326 puis tous les diviseurs de 546 et ainsi nous pourrons déterminer le plus grand diviseur commun. Exercice diviseur commun sur. Problème: la recherche de TOUS les diviseurs d'un nombre entier est souvent longue et fastidieuse. Solution: nous allons voir des algorithmes de recherche qui nous permettront un travail plus rapide. Algorithme des différences Exemple: Déterminer PGCD (1 326; 546). 1) Soustraire le plus petit des deux nombres au plus grand: 2) On prend les deux plus petits et on recommence: 3) On continue jusqu'à obtenir un résultat nul: Le plus grand diviseur est le dernier reste non nul dans la succession des différences de l'algorithme Ici, PGCD ( 1 326; 546) = 78 Algorithme d'Euclide: méthode ● 1) On effectue la division euclidienne du plus grand des deux nombres par le plus petit.

Exercice Diviseur Commun Au

Une page de Wikiversité, la communauté pédagogique libre. Aller à la navigation Aller à la recherche Exercice 3-1 [ modifier | modifier le wikicode] Pour chacun des entiers naturels a et b donnés, trouver l'ensemble des diviseurs D(a) et D(b). Déduisez-en le PGCD de a et b. 1° a = 48; b = 32. 2° a = 120; b = 168. 3° a = 60; b = 96. Solution 1° a = 2 4 ×3 donc D(a) = {2 p ×3 q | 0 ≤ p ≤ 4 et 0 ≤ q ≤ 1}. b = 2 5 donc D(b) = {2 p | 0 ≤ p ≤ 5}. D(a)∩D(b) = {2 p | 0 ≤ p ≤ 4} donc pgcd(a, b) = 2 4 = 16. 2° a = 2 3 ×3×5 donc D(a) = {2 p ×3 q ×5 r | 0 ≤ p ≤ 3, 0 ≤ q ≤ 1 et 0 ≤ r ≤ 1}. b = 2 3 ×3×7 donc D(b) = {2 p ×3 q ×7 r | 0 ≤ p ≤ 3, 0 ≤ q ≤ 1 et 0 ≤ r ≤ 1}. D(a)∩D(b) = {2 p ×3 q | 0 ≤ p ≤ 3 et 0 ≤ q ≤ 1} donc pgcd(a, b) = 2 3 ×3 = 24. 3° a = 2 2 ×3×5 donc D(a) = {2 p ×3 q ×5 r | 0 ≤ p ≤ 2, 0 ≤ q ≤ 1 et 0 ≤ r ≤ 1}. Exercice diviseur commun le. b = 2 5 ×3 donc D(b) = {2 p ×3 q | 0 ≤ p ≤ 5 et 0 ≤ q ≤ 1}. D(a)∩D(b) = {2 p ×3 q | 0 ≤ p ≤ 2 et 0 ≤ q ≤ 1} donc pgcd(a, b) = 2 2 ×3 = 12. Exercice 3-2 [ modifier | modifier le wikicode] Dans les exemples suivants, indiquez si les nombres a et b sont premiers entre eux.
PGCD(702; 494) = PGCD(494; 208) Ici, on prend le plus petit nombre et le reste de la division de 702 par 494. On continue. PGCD(494; 208) = PGCD(208; 78) = PGCD(78; 52) = PGCD(52; 26) = PGCD(26; 0) = 26 Le PGCD peut être utilise lorsque l'on veut rendre une fraction irréductible. En effet, il suffit de trouver le PGCD du numérateur et du dénominateur puis à simplifier la fraction par lui. Cette calculatrice arithmétique permet de calculer le PGCD de deux nombres entiers. 3 - Résolution de problèmes en arithmétique Et à quoi il peut bien servir ce PGCD? A résoudre des problèmes de la vie courante! Si si, je vous assure. Divisibilité et recherche des diviseurs communs - 3ème - Exercices corrigés. regardez plutôt. Marc a 108 billes rouges et 135 billes noires. Il veut faire des paquets de manière à ce que: Tous les paquets contiennent le même nombre de billes rouges, Tous les paquets contiennent le même nombre de billes noires, Toutes les billes rouges et les billes noires sont utilisées. Quel nombre maximal de paquets pourra-t-il réaliser? Imaginons que Marc commence par partager séparément les billes rouges et les billes noires.