Montrer Qu'Une Suite Est Arithmétique Par 2 Méthodes - Première S Es Sti - Youtube

Dans Mon Hlm Guitare

Quelle est la formule de la suite infinie? Une série géométrique infinie est la somme d'une suite géométrique infinie. Cette série n'aurait pas de terme définitif. La forme générale de la série géométrique infinie est a1 + a1r + a1r2 + a1r3 +…, où a1 est le premier terme et r est le rapport commun.

Montrer Qu'Une Suite Est Arithmétique Par 2 Méthodes - Première S Es Sti - Youtube

La relation de récurrence pour \(v\) sera de la forme \(v_{n+1}=qv_n\), ce qui prouvera bien que la suite est géométrique et donnera en même temps la raison de la suite. On peut alors déterminer le terme général de la suite \(v\) grâce à la formule du cours qui donne que pour tout entier naturel \(n\), on a \(v_n=v_0q^n\) Résolution: Pour tout \(n\in \mathbb{N}\): v_{n+1} &= u_{n+1}+\frac{5}{7}\\ v_{n+1} &= 8u_n+5+\frac{5}{7}\\ v_{n+1} &= 8u_n+\frac{40}{7}\\ v_{n+1} &= 8\left(u_n+\frac{5}{7}\right)\\ v_{n+1} &= 8v_n Donc, la suite \(v\) est bien géométrique de raison \(8\). Montrer qu'une suite est arithmétique par 2 méthodes - Première S ES STI - YouTube. Or, \(v_0=u_0+\frac{5}{7}\) Donc, \(v_0=3+\frac{5}{7}=\frac{26}{7}\) & v_n = v_0+8n\\ & v_n = \frac{26}{7}+8n De plus, on sait que pour tout \(n\in \mathbb{N}\), \(v_n=u_n+\frac{5}{7}\). Ainsi, pour tout \(n\in \mathbb{N}\), & u_n = v_n-\frac{5}{7}\\ & u_n = \frac{26}{7}+8n-\frac{5}{7}\\ & \boxed{u_n = 3+8n} Prouver qu'une suite n'est pas arithmétique & u_{n+1} = 5u_n+2\ \ \ \ \forall n\in \mathbb{N}\\ Prouver que la suite \(u\) n'est pas arithmétique.

Suite Arithmétique - Croissance Linéaire - Maxicours

Prouver que la suite \(v\) est arithmétique puis en déduire le terme général de la suite \(u\). Explications de la résolution: La résolution se fait toujours en plusieurs étapes. Souvent, les sujets vous guident par plusieurs questions intermédiaires pour trouver la solution. Ici, je vous ai mis le cas le plus compliqué: aucunes questions intermédiares. L'ordre de raisonnement est donc le suivant: On commence par prouver que la suite \(v\) est arithmétique. Pour cela, il suffit d'étudier \(v_{n+1}\) pour tout entier naturel \(n\). Vous commencez par utiliser la définition de \(v\) (ici on obtiendra que \(v_{n+1}=\left(u_{n+1}\right)^2\)). On peut alors remplacer \(u_{n+1}\) par la relation de récurrence donnée dans l'énoncé. Il ne reste alors plus qu'à simplifier le plus possible pour faire apparaître \(u_n^2\) c'est-à-dire \(v_n\). Comment prouver qu une suite est arithmétiques. La relation de récurrence pour \(v\) sera de la forme \(v_{n+1}=v_n+r\), ce qui prouvera bien que la suite est arithmétique et donnera en même temps la raison de la suite.

Par définition, on passe d'un terme à son suivant en ajoutant toujours le même nombre r (raison). U n = U n- 1 + r; U n-1 = U n-2 + 1 r donc U n = U n- 2 + r; U n-2 = U n-3 + 1 r U n = U n- 3 + r;... U 1 = U 0 + 1 r U n = U n- n + n r = U 0 + n r. Terme de rang n Si une suite ( U n) est arithmétique de raison r et de premier terme U 0, alors U n = U 0 + n r. Exemples • La suite arithmétique de premier terme U 0 = 100 et de raison 50 peut s'écrire de manière explicite: U n = 100 + 50 n. • Soit une somme de 2 000€ placé à intérêts simples de 4%. Calculer la somme obtenue au bout de 10 ans. Les intérêts simples sont de: €. Si U 0 est la somme initiale alors la somme obtenue au bout d'un an est: U 1 = U 0 + 80 = 2 080. Comment prouver qu'une suite est arithmétique. Au bout de 2 ans: U 2 = U1 + 80 = 2 160. Au bout de 3 ans: U 3 = U 2 + 80 = 2 160 + 80 = 2 240... (U n) est une suite arithmétique de raison 80 donc U n = U 0 + 80n = 2 000 + 80n. Au bout de 10 ans, U 10 = 2 000 + 80X10 = 2 800 €.